metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.6D6, C22.2D12, (C22×S3)⋊C4, (C2×Dic3)⋊C4, C22⋊C4⋊1S3, C3⋊1(C23⋊C4), (C2×C6).27D4, C2.4(D6⋊C4), C22.3(C4×S3), C6.D4⋊1C2, C6.2(C22⋊C4), C22.8(C3⋊D4), (C22×C6).5C22, (C2×C6).1(C2×C4), (C3×C22⋊C4)⋊1C2, (C2×C3⋊D4).1C2, SmallGroup(96,13)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C23 — C22⋊C4 |
Generators and relations for C23.6D6
G = < a,b,c,d,e | a2=b2=c2=1, d6=a, e2=abc, ab=ba, eae-1=ac=ca, ad=da, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=bcd5 >
Character table of C23.6D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 2 | 2 | 2 | 12 | 2 | 4 | 4 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | 1 | -1 | -1 | 1 | -1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | -1 | 1 | -1 | -1 | 1 | -1 | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | 1 | -1 | -1 | 1 | -1 | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | -1 | 1 | -1 | -1 | 1 | -1 | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ15 | 2 | 2 | -2 | 2 | -2 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | i | i | -i | -i | complex lifted from C4×S3 |
ρ16 | 2 | 2 | -2 | 2 | -2 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | -i | -i | i | i | complex lifted from C4×S3 |
ρ17 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -√-3 | √-3 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | √-3 | -√-3 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2√-3 | 2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2√-3 | -2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 9)(3 11)(5 7)(13 19)(15 21)(17 23)
(1 9)(2 10)(3 11)(4 12)(5 7)(6 8)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 22)(2 15 10 21)(3 14)(4 19 12 13)(5 18)(6 23 8 17)(7 24)(9 16)(11 20)
G:=sub<Sym(24)| (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,9)(3,11)(5,7)(13,19)(15,21)(17,23), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,22)(2,15,10,21)(3,14)(4,19,12,13)(5,18)(6,23,8,17)(7,24)(9,16)(11,20)>;
G:=Group( (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,9)(3,11)(5,7)(13,19)(15,21)(17,23), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,22)(2,15,10,21)(3,14)(4,19,12,13)(5,18)(6,23,8,17)(7,24)(9,16)(11,20) );
G=PermutationGroup([[(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,9),(3,11),(5,7),(13,19),(15,21),(17,23)], [(1,9),(2,10),(3,11),(4,12),(5,7),(6,8),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,22),(2,15,10,21),(3,14),(4,19,12,13),(5,18),(6,23,8,17),(7,24),(9,16),(11,20)]])
G:=TransitiveGroup(24,94);
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(2 22)(4 24)(6 14)(8 16)(10 18)(12 20)
(1 21)(2 22)(3 23)(4 24)(5 13)(6 14)(7 15)(8 16)(9 17)(10 18)(11 19)(12 20)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 6 15 12)(2 19 8 5)(3 24 17 18)(4 9 10 23)(7 20 21 14)(11 16 13 22)
G:=sub<Sym(24)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (2,22)(4,24)(6,14)(8,16)(10,18)(12,20), (1,21)(2,22)(3,23)(4,24)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,6,15,12)(2,19,8,5)(3,24,17,18)(4,9,10,23)(7,20,21,14)(11,16,13,22)>;
G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (2,22)(4,24)(6,14)(8,16)(10,18)(12,20), (1,21)(2,22)(3,23)(4,24)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,6,15,12)(2,19,8,5)(3,24,17,18)(4,9,10,23)(7,20,21,14)(11,16,13,22) );
G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(2,22),(4,24),(6,14),(8,16),(10,18),(12,20)], [(1,21),(2,22),(3,23),(4,24),(5,13),(6,14),(7,15),(8,16),(9,17),(10,18),(11,19),(12,20)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,6,15,12),(2,19,8,5),(3,24,17,18),(4,9,10,23),(7,20,21,14),(11,16,13,22)]])
G:=TransitiveGroup(24,103);
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 22)(2 8)(3 24)(4 10)(5 14)(6 12)(7 16)(9 18)(11 20)(13 19)(15 21)(17 23)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 13)(11 14)(12 15)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 9)(2 23 17 8)(3 22)(4 6 19 21)(7 18)(10 15 13 12)(11 14)(16 24)
G:=sub<Sym(24)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,22)(2,8)(3,24)(4,10)(5,14)(6,12)(7,16)(9,18)(11,20)(13,19)(15,21)(17,23), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,9)(2,23,17,8)(3,22)(4,6,19,21)(7,18)(10,15,13,12)(11,14)(16,24)>;
G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,22)(2,8)(3,24)(4,10)(5,14)(6,12)(7,16)(9,18)(11,20)(13,19)(15,21)(17,23), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,9)(2,23,17,8)(3,22)(4,6,19,21)(7,18)(10,15,13,12)(11,14)(16,24) );
G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,22),(2,8),(3,24),(4,10),(5,14),(6,12),(7,16),(9,18),(11,20),(13,19),(15,21),(17,23)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,13),(11,14),(12,15)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,9),(2,23,17,8),(3,22),(4,6,19,21),(7,18),(10,15,13,12),(11,14),(16,24)]])
G:=TransitiveGroup(24,108);
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 10)(2 8)(3 12)(4 7)(5 11)(6 9)(13 16)(14 23)(15 18)(17 20)(19 22)(21 24)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3)(4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 17 7 20)(2 13 11 16)(3 21 9 24)(4 23 10 14)(5 19 8 22)(6 15 12 18)
G:=sub<Sym(24)| (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,10)(2,8)(3,12)(4,7)(5,11)(6,9)(13,16)(14,23)(15,18)(17,20)(19,22)(21,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,17,7,20)(2,13,11,16)(3,21,9,24)(4,23,10,14)(5,19,8,22)(6,15,12,18)>;
G:=Group( (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,10)(2,8)(3,12)(4,7)(5,11)(6,9)(13,16)(14,23)(15,18)(17,20)(19,22)(21,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3)(4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,17,7,20)(2,13,11,16)(3,21,9,24)(4,23,10,14)(5,19,8,22)(6,15,12,18) );
G=PermutationGroup([[(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,10),(2,8),(3,12),(4,7),(5,11),(6,9),(13,16),(14,23),(15,18),(17,20),(19,22),(21,24)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3),(4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,17,7,20),(2,13,11,16),(3,21,9,24),(4,23,10,14),(5,19,8,22),(6,15,12,18)]])
G:=TransitiveGroup(24,119);
C23.6D6 is a maximal subgroup of
C23⋊C4⋊5S3 C23⋊D12 C23.5D12 S3×C23⋊C4 (C2×D12)⋊13C4 C24⋊6D6 C22⋊C4⋊D6 C22.D36 C62.31D4 C62.32D4 C62.110D4 C15⋊8(C23⋊C4) C15⋊9(C23⋊C4) C23.6D30 D10.D12 D10.4D12
C23.6D6 is a maximal quotient of
C6.C4≀C2 C4⋊Dic3⋊C4 C23.35D12 (C22×S3)⋊C8 (C2×Dic3)⋊C8 C22.2D24 C3⋊C2≀C4 (C2×D4).D6 C23.D12 C23.2D12 C23.3D12 C23.4D12 (C2×C4).D12 (C2×C12).D4 C24.13D6 C22.D36 C62.31D4 C62.32D4 C62.110D4 C15⋊8(C23⋊C4) C15⋊9(C23⋊C4) C23.6D30 D10.D12 D10.4D12
Matrix representation of C23.6D6 ►in GL4(𝔽7) generated by
0 | 1 | 4 | 5 |
1 | 0 | 3 | 5 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 6 |
1 | 5 | 2 | 6 |
1 | 5 | 5 | 3 |
0 | 0 | 1 | 0 |
5 | 2 | 1 | 0 |
6 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
1 | 0 | 5 | 2 |
2 | 1 | 6 | 1 |
5 | 5 | 5 | 4 |
4 | 3 | 5 | 0 |
4 | 2 | 2 | 6 |
3 | 0 | 5 | 4 |
6 | 1 | 4 | 3 |
4 | 4 | 5 | 6 |
G:=sub<GL(4,GF(7))| [0,1,0,0,1,0,0,0,4,3,1,0,5,5,0,6],[1,1,0,5,5,5,0,2,2,5,1,1,6,3,0,0],[6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[1,2,5,4,0,1,5,3,5,6,5,5,2,1,4,0],[4,3,6,4,2,0,1,4,2,5,4,5,6,4,3,6] >;
C23.6D6 in GAP, Magma, Sage, TeX
C_2^3._6D_6
% in TeX
G:=Group("C2^3.6D6");
// GroupNames label
G:=SmallGroup(96,13);
// by ID
G=gap.SmallGroup(96,13);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,121,31,362,297,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^6=a,e^2=a*b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^5>;
// generators/relations
Export
Subgroup lattice of C23.6D6 in TeX
Character table of C23.6D6 in TeX